

Введение

Объекты исследования: 1. Снежный покров.

2. Лавина

Вопрос: лавина это объект или процесс?

Лавинная геосистема

Массив горных пород

Лавиносбор

Метеорологические условия территории

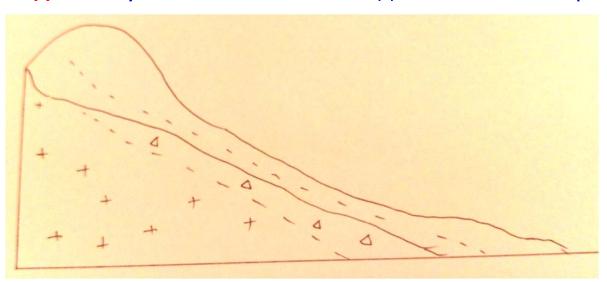
Снежный покров

Лавина

Лавинные отложения

Иерархия подсистемных уровней в лавинной геосистеме

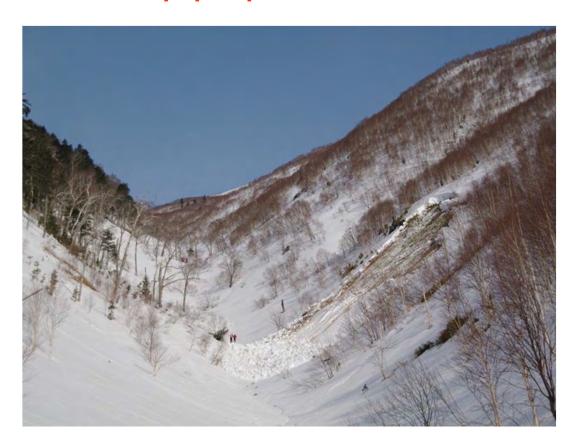
Компонента геосистемы			Фаза эволюции	
Система	Подсистема	Отображение	геосистемы	
Лавинная	Геолого-	Лавиносбор		
геосистема	геоморфологическая			
	Литологическая	Снежный слой	Формирования	
		Снежная толща	Неравновесная	
		Лавина	Динамическая	
		Лавинные	Pulpowgould	
		отложения	Вырождения	

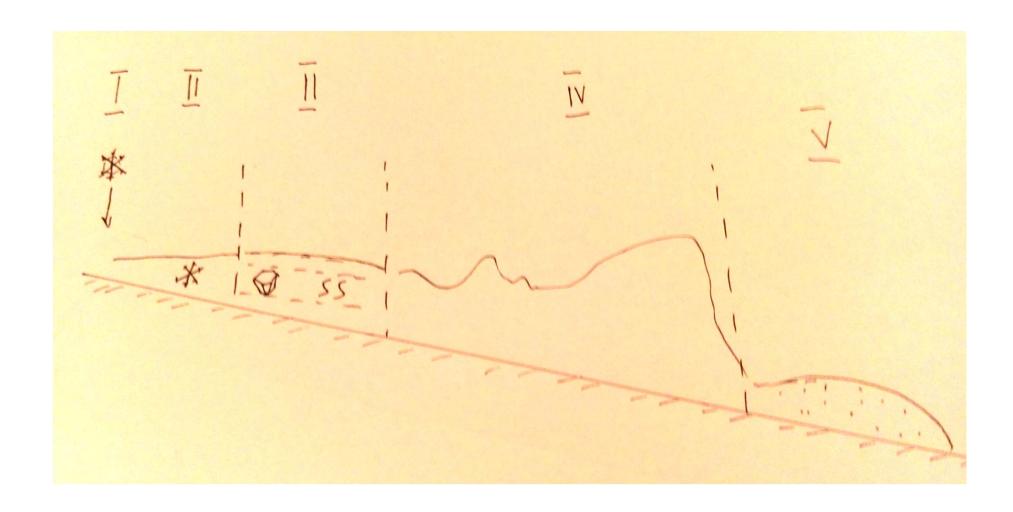

1. Эволюция лавиносбора

Увеличение площади

Увеличение длины

Увеличение глубины вреза.


Следствие: увеличение объёма и динамических параметров лавин

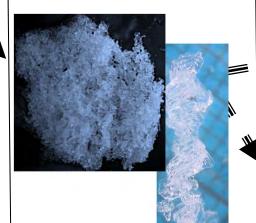

Фазы единого непрерывного процесса развития литологической компоненты лавинной геосистемы

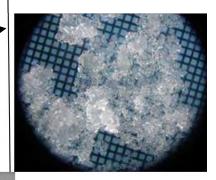
Седиментация снежной толщи диагенез снежной толщи отрыв лавины движение лавины

остановка лавины и формирование лавинных отложений

Фазы лавинного процесса

Фазы лавинного процесса


Фаза формирования


Неравновесная фаза

Динамическая фаза

Статическая фаза

Динамический xaoc

структуры

Тип диссипативной Пространственнонеоднородная структура

Временная периодическая структура селя Вырождение системы

Проблема

Физические модели лавинного процесса, позволяющие адекватно описать лавину - удовлетворительных не существует

Математические модели - основаны на идеальных математических либо эмпирических представлениях, сильно упрощающих реальную картину

Описание лавины - большая степень приближённости.

По этим причинам значения динамических характеристик лавин (особенно, дальности выброса лавин), рассчитанные по существующим моделям, оказываются сильно заниженными по сравнению с реально наблюдаемыми характеристиками.

От типа применяемой модели зависит расчёт характеристик лавин:

- дальность выброса лавины;
- скорость лавины;
- давление лавины.

Основные группы моделей лавины

- Гидродинамические
- Гравитационные
- Материальной точки
- Нелинейные волновые

Сомнения

1) Гидродинамические модели

Динамика лавины - сильно отличается от динамики потока жидкости. Коэффициенты *кинетического* и *турбулентного* трения: приняты из гидрологии и гидродинамики, не соответствуют трению лавины и определяются субъективно.

Проблема: эмпирические коэффициенты

Коэффициент турбулентного трения, С

Подстилающая поверхность в зоне транзита	ζ, м/с ³
Ровный снежный покров на открытом склоне с постоянным уклоном	1200-1600
Открытый безлесный склон	750
Открытый склон со скалами и кустарником	500
Ложбина	400-600
Поверхность с валунами и ложбинами	300
Лес	150

Коэффициент кинетического трения, µ

Скорость лавины, м/с	μ
> 50	Не учитывается
30 - 50	0,1 - 0,15
≤ 30	0,2-0,3

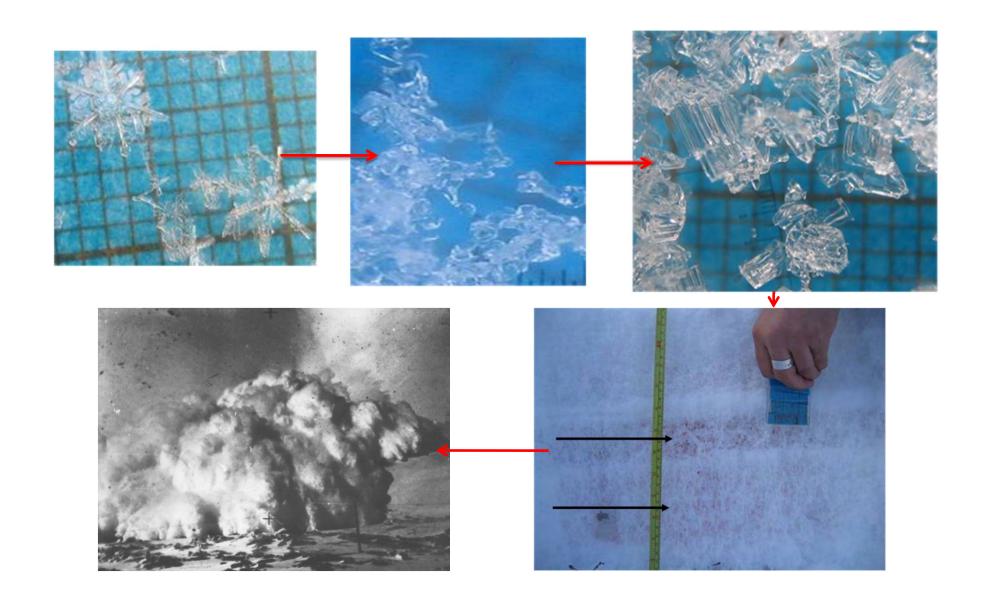
Сомнения

2) Гравитационные модели Приемлемы для:

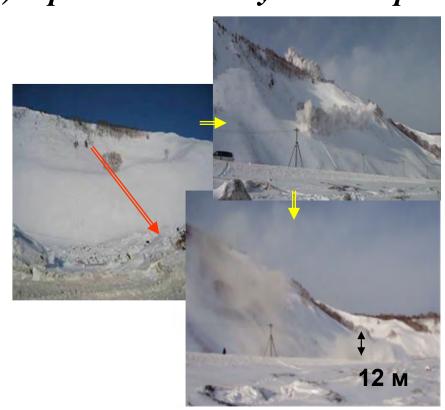
- описания небольших лавин, движущихся по коротким крутым склонам;
- описания первой фазы движения лавин твёрдого метелевого снега.

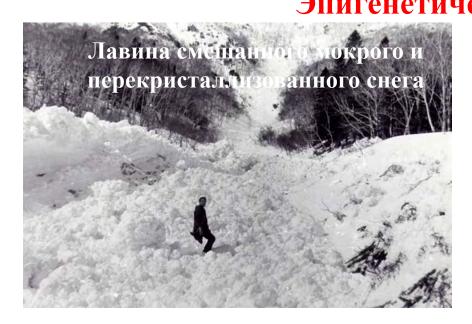
Сомнения

3) Модели материальной точки


Крайне упрощённое представление.

Проблема: перекристаллизация снежной толщи




Генетические классы лавин: разная динамика

- лавины нового снега;
- лавины мокрого снега;
- лавины перекристаллизации снежной толщи:
- 1)сухого старого и нового снега;
- 2)сухого старого снега;
- 3)влажного (мокрого) верхнего слоя и сухого старого снега.

Сингенетические лавины

Главные проблемы:

- лавины разных генетических типов описываются одними и теми же моделями;
- использование эмпирических коэффициентов;

По этим причинам:

динамические характеристики лавин (особенно, дальности выброса лавин), рассчитанные по существующим моделям, оказываются сильно заниженными по сравнению с реально наблюдаемыми.

Пути решения?

Структурно-реологические типы лавин.

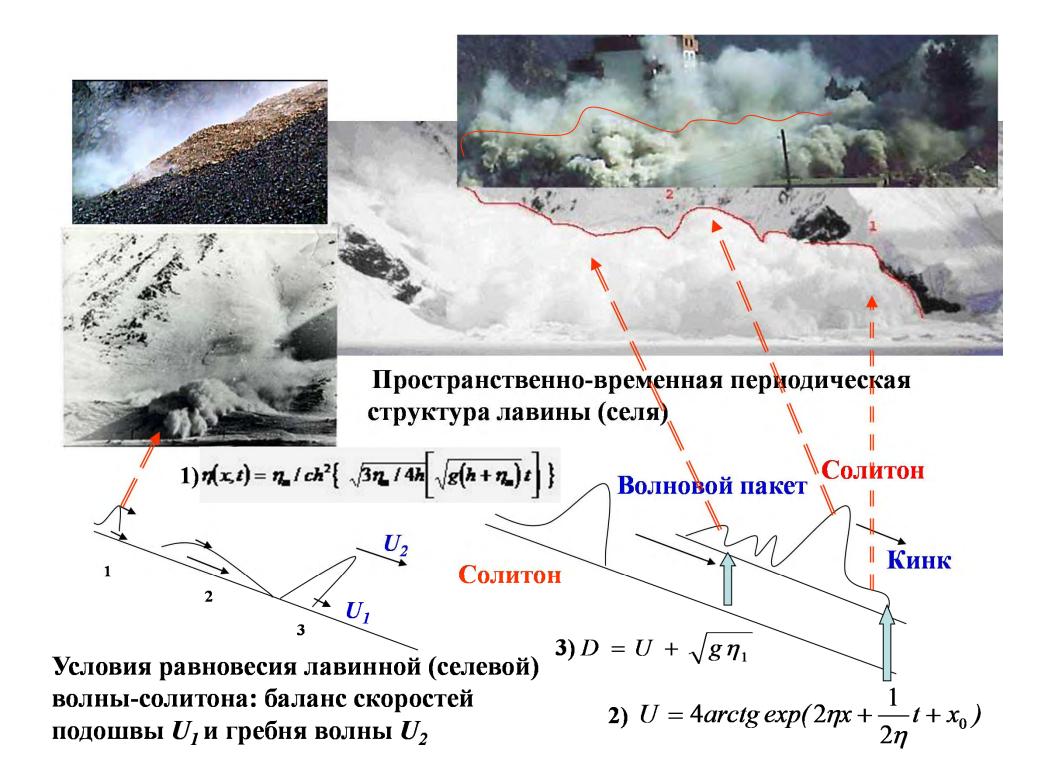
Лавины мокрого снега, свежевыпавшего снега, метелевого снега,

перекристаллизованного и смешанного снега

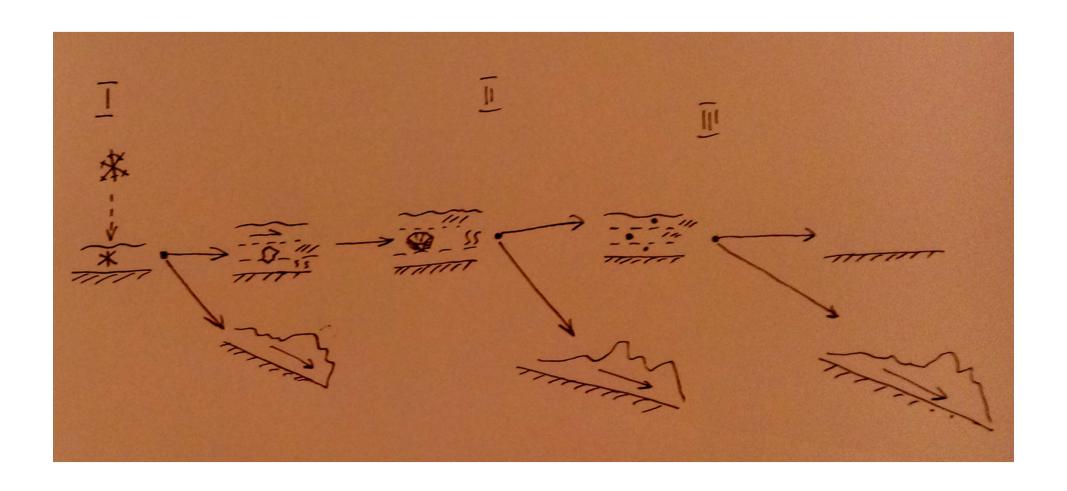
обладают разными структурно-реологическими свойствами и, соответственно, разной динамикой и должны описываться как разные объекты (процессы) — разными моделями.

Генетические типы лавин по Н.А. Казакову

Генетический тип лавины	Плотность лавино- образующего снега, г/см ³	Характер движения лавины	Макс. объём лавины, тыс. м ³	Макс. дальность выброса лавины, м	Макс. скорость лавины, м/с	Преоблада- ющие про- цессы, определяю- щие генезис лавин
	I Генетическ	ий класс лавин: син	генетически	е лавины		
Метелевого снега (снежная доска)	0,20 - 0,50	Ламинарный Скольжение	5,0	400	30	Синоптичес- кие и
Снеготаяния (мокрого снега)	0,15 - 0,50	Ламинарный Вязкое течение	5,0	300	15	метеороло- гические
Свежевыпавшего снега	0,05 - 0,15	Турбулентный	10,0	500	40	процессы
	II Генетическ	кий класс лавин: эпи	1 генетическі	ие лавины	•	•
Перекристаллизован-ного снега	0,22 - 0,38	Турбулентный Волновой процесс	>50,0	>1000	>80	Геофизи- ческие про- цессы в сне- жной толще
III Генетический класс лавин: полигенетические лавины						
Перекристаллизован-ного и сухого свежевыпавшего снега	0,25 - 0,35	Турбулентный Волновой процесс	>1400,0	3800	>80	Геофизиче- ские про-
Перекристаллизован- ногои сухого метелевого снега	0,25 - 0,45	Турбулентный Волновой процесс	>1000,0	>2000	>80	цессы в сне- жной толще; гидрометео-
Перекристаллизован-ного и мокрого снега	0,35 - 0,50	Турбулентный Волновой процесс	100,0	1200	50	рологичес- кие процессы

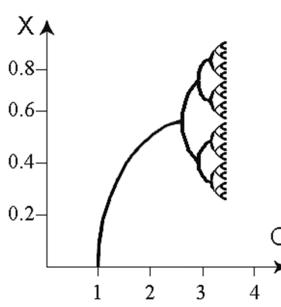

Пути решения?

2) Описание лавины как процесса самоорганизации упорядоченных структур


Лавина как процесс самоорганизации упорядоченных структур

Генетический класс лавины	Тип движения	Тип волны	Начальные условия (тип структуры)	Тип структуры лавины
Лавина нового снега	Течение	Поперечная	Бесструктурный	Нет
Лавина перекристал- лизованного и смешанного снега	Волновой	Поперечная, продольная	Пространственн о-неоднородная и временная периодическая	Периодическая Пространст- венно- временная
Лавина мокрого снега	Вязкое течение	Поперечная	Бесструктурный	Нет

Точки бифуркации системы



Пути решения?

3) Описание лавинного и селевого процессов в рамках теории динамического хаоса

Логистическое уравнение М. Фейгенбаума, позволяющая описывать динамику развития системы

Xn+1=CXn(I-Xn)

Эволюция литологической компоненты лавинной (селевой) геосистемы

Выводы

1. Эволюция лавинной геосистем - непрерывный процесс самоорганизации упорядоченных структур.

Каждую стадию эволюции геосистемы можно описать как подсистемный уровень в триггерной геосистеме, а смену состояний системы, обусловленную физическими процессами, происходящими внутри системы - как фазовые переходы с одного подсистемного уровня на другой.

Лавинный процесс как процесс самоорганизации упорядоченных структур представляет собой последовательность автономных стадий самоорганизации системы, при которых система переходит в одно из многих допустимых равновероятных состояний.

Финальное состояние эволюционирующей физической системы (литологостратиграфический комплекс снежного покрова и ПСМ): прекращение её эволюции при переходе в статическую фазу (формирование лавинных и селевых отложений), достигаемое через прохождение системы через состояние динамического хаоса (лавина).

Эволюцию лавинной и селевой геосисте как триггерных геосистемы можно представить как непрерывную смену равновесных и неустойчивых состояний.

2. Можно выделить 3 основных генетических класса лавин : эпигенетические, сингенетические, полигенетические.

Динамика лавин определяется, в первую очередь, их генетическим типом.

Каждый генетический тип лавин обусловлен сочетанием преобладающих в геосистеме совокупности физических, геологических и гидрометеорологических процессов, определяющих ведущие факторы образования данных типов лавин.

В образовании сингенетических лавин преобладающую роль играют синоптические и метеорологические факторы, а в образовании эпигенетических лавин – геофизические факторы или геофизические факторы в сочетании с синоптическими и метеорологическими.

